References of Sievert Consult and its associates

(Mizan Consult FZE, Blumberg-engineers)

REED BED TREATMENT SYSTEMS (CONSTRUCTED WETLANDS) IN THE MIDDLE EAST U.A.E., Iran, Oman, Jordan, Qatar

<image>

Wastewater treatment plant Mahshahr, Iran

Owner: Petrochemical Special Economic Zone Persian gulf region, Islamic Republic of Iran

Consultant: Blumberg engineers

Treatment of domestic waste water from a worker camp

Person equivalent: 4,000 PE

Pretreatment:

- Screen, pumping station
- Sedimentation tank
- Separate sludge silo
- Distribution by vacuum siphon

Secondary treatment: - Vertical subsurface flow constructed wetland

- 8 reed beds
- Two-stage system

Discharge:

- Reuse for irrigation

Gross space requirement: - 9,000 m²

Special features: - Temperature up to 45°C

Labor Camp Mirfa, Abu Dhabi, U.A.E.

Client : Waagner Biro Gulf

Contractor :

Waagner Biro Gulf (with support for planning, design, construction supervision, start-up and operation by Mizan Consult)

Installation of dams

Treatment of raw waste water, for reuse as irrigation water.

Population equivalent: 80 PE

Planning: 04/2011 Construction: 05-07/2011

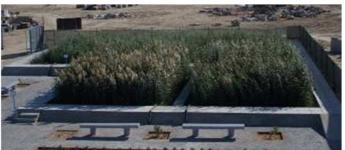
Pre-treatment:

- Macerator pump station
- Sludge Filtration & Mineralization
 Reed Bed
 (2 basins, vertical flow)

Biological treatment step :

- Reed Bed, vertical flow
- (1 basin, vertical flow)

Outlet:


- 20 m³ of treated water per day.
- Direct reuse of the water for: irrigation

Space requirement:

- 400 m²

Spray nozzles test Stage B

Reed Bed treatment system after 6 months of operation

COD	BOD	NH4-N	PO4-P	TDS	TSS	DO	Turbidity	pН
[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	NTU	
383	279	45.4	5.53	357	129			7.65
<12	< 5	0.2	0.02	933	< 10			7.8
-	10	-	-	-	10	1	5	6 - 8
-	50	2	2	-	50	>3	75	6 - 9
	[mg/l] 383	[mg/l] [mg/l] 383 279 <12 < 5 - 10	[mg/l] [mg/l] [mg/l] 383 279 45.4 <12	[mg/l] [mg/l] [mg/l] [mg/l] 383 279 45.4 5.53 <12	[mg/l] [mg/l] [mg/l] [mg/l] [mg/l] 383 279 45.4 5.53 357 <12	[mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] 383 279 45.4 5.53 357 129 <12	[mg/l] [mg/l]<	[mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] NTU 383 279 45.4 5.53 357 129 129 121 122 120 120 100 110 1

*Treated sewage effluent

Savannah Lodge, Sir Bani Yas Island, Abu Dhabi, U.A.E.

Client : TDIC

Contractor : Hilalco

Main Consultant:

Parsons with specialised reed bed subconsultant Mizan Consult for design, construction supervision, start-up and operation

Population equivalent:

90 PE

Planning: 2010 Construction: 04-10/2011

Pre-treatment:

- Macerator pump stationSludge Filtration & Mineralization
- Reed Bed (2 basins, vertical flow)

Biological treatment step :

- Reed Bed, vertical flow (2 basins, vertical flow)

Outlet:

- 18 m³ of treated water per day.
- Direct reuse of the water for: irrigation

Space requirement:

- 1100 m²

Excavation of basins

Casting pump station

Sand filling of basins

Basins after 3 months

Anantara Hotel, Sir Bani Yas Island, Abu Dhabi, U.A.E.

Client : TDIC

Contractor : Hilalco Waagner Biro Gulf (RBC team)

Main Consultant:

Parsons with specialised reed bed subconsultant Mizan Consult for design, construction supervision, start-up and operation

Population equivalent: Phase 1: 300 PE Phase 2: 1200 PE

Planning: 2010 Construction: 04-10/2011

Pre-treatment:

- Tanker discharge station
- Manual bar screen
- Macerator pump station
- Sludge Filtration & Mineralization Reed Bed Stage A
 (4 basins, vertical flow, 4 x 248 m²)

Biological treatment step :

- Reed Bed, vertical flow (4 basins, vertical flow, 4 x 360 m²)

Outlet:

- 62.5 m³ of treated water per day.
- Direct reuse of the water for: Irrigation

Space requirement total:

8000 m²

Contract value: 16 Mio AED

Excavation of pump station

Pump station

Earth basins

First TSE discharge

	COD	BOD	NH4-N	PO4-P	TDS	TSS	DO	Turbidity	pН
	[mg/l]	NTU							
Inflow	86	91	22.6	2,27		55	2	24.6	7.55
TSE*	28.5	10	nd	0.355		3.5	7.46	1.53	7.75
ADSSC P1	-	10	-	-	-	10	>1	5	6 - 8
ADSSC P3	-	50	2	2	-	50	>3	75	6 - 9

*Treated sewage effluent

Labor Camp Sila, Abu Dhabi, U.A.E.

Client : Waagner Biro Gulf

Contractor :

Waagner Biro Gulf (with support for planning, design, construction supervision and start-up by Mizan Consult)

Treatment of complete waste water for reuse as irrigation water.

Population equivalent:

200 PE Planning: 07/2011 Construction: 08/2011 - 04-2012

Pre-treatment:

- Macerator pump station
- Sludge Filtration & Mineralization Reed Bed (2 basins, vertical flow, 260 m²)

Biological treatment step :

- Reed Bed, vertical flow (1 basin, vertical flow, 340 m²)

Outlet:

- 40 m³ of treated water per day.
- Direct reuse of the water for:
- irrigation

Space requirement:

- 800 m²

Stage A, after planting reed

	BOD	NH4-N	PO4-P	TDS	TSS	DO	Turbidity
	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	NTU
Raw Inflow	148	48.7	8.8	364	50		
TSE*	2	0.13	2.1	1324	<5		
ADSSC P1	10	-	-	-	10	1	5
ADSSC P3	50	2	2	-	50	>3	7

*Treated sewage effluent

Labour camp, Al Sifa, Oman

Client :

Muriya Tourism Development Oman

Contractor :

Bauer Oman (with support for planning, design, construction supervision, start-up and operation by Mizan Consult engineer)

Population equivalent : 100 PE, 14 m³/day

Planning:09/2009 Construction: 11-12/2009

Sewage treatment: Raw sewage reed bed

- Cutter pump station
- Vertical filtration reed bed
- Horizontal biological reed bed
- Storage tank, tanker filling

Sewage sludge treatment :

Directly in filtration reed bed

Outlet:

- Storage and reuse for construction

Advantages:

- No sewage storage & discharge
- Green technology for the project
- Production of fertilizer

Space requirement:

- 1400 m²

Earth works

Basins after planting

Basins after 1 year of operation

COD	BOD	NH4-N	NO3-N	TDS	TSS	pН
[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	
910	330	62	-	1000	680	7.3
20	8	22	5	1150	52	7.8
18	7	1.6	6	1200	7	7.9
	[mg/l] 910 20	[mg/l] [mg/l] 910 330 20 8	[mg/l] [mg/l] [mg/l] 910 330 62 20 8 22	[mg/l] [mg/l] [mg/l] [mg/l] 910 330 62 - 20 8 22 5	[mg/l] [mg/l] [mg/l] [mg/l] [mg/l] 910 330 62 - 1000 20 8 22 5 1150	[mg/l] [mg/l]<

After 1 year of operation

Sewage sludge mineralization, Resort Zighybay, Oman

Client : Six Senses Resort Zighy Bay

Population equivalent :

Contractor :

1400 PE

Bauer Emirates Environment (with support for planning, design, construction supervision, start-up and operation by Mizan Consult)

Filter layer

Planting

After 6 month of operation, view from the private hotel beach

Wetland roof, Dubai, U.A.E.

Client : Dubai Municipality

Contractor : Waagner Biro Gulf (with support for planning and design by Mizan Consult engineer)

Population equivalent: 4 PE

Planning: 10/2007 Construction: 12/2007

Pre-treatment:

No pre-treatment - only grinder pump station

Biological treatment step:

- within the layer of a green roof

Outlet:

- No outlet
- Direct reuse of the wastewater for roof top irrigation

Advantages:

- No septic tank
- No sewer connection
- Direct reuse of wastewater
- No contact of people with sewage
- Cooling of container by irrigated green roof

Space requirement:

- 15 m²

Container before installation

Container with wetland roof after planting

Container after 3 years of operation

Grey-water treatment Labour camp Al Awir, Dubai, U.A.E.

Client : Waagner Biro Gulf

Contractor :

Waagner Biro Gulf (with support for planning , design, construction and operation by Mizan Consult)

Treatment of grey-water (Showers, washbasins) at a labour camp.

Population equivalent: 250 PE

Planning: 12/2005 Construction: 01-03/2005

Pre-treatment:

- Settlement tanks

- Pumping station

Biological treatment step :

- vertical subsurface flow constructed wetlands

Outlet:

25 m³ of blended water per day.

- Direct reuse of the water for:

Irrigation Road watering Car washing ..Fish pond

Space requirement:

- 450 m²

Filling of filter material

Reed Bed after 1 year of operation

Reed bed and fish pond with treated water

	COD	BOD	TKN	NO ₃ -N	NH ₄ -N	PO ₄ -P	TDS	TSS	CL	SO4	Salinity	pН
	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[‰]	
Septic tank IN	162	67	2.1	1	3.6	7.0	314	47				7.1
Reed Bed IN	131	18			6.7	8.2	257	36				7.1
Reed Bed OUT	10.5	2.0	2.5	2.6	0.7	4.8	420	0	113.5	45	0.4	7.7

Site camp, Lagoons, Dubai U.A.E.

Client : Wade Adams

Contractor :

Waagner Biro Gulf (with support for planning and design by Mizan Consult)

Treatment of wastewater from a site camp.

Population equivalent: 200 PE

Planning: 03/2006 Construction: 03/2006

Pre-treatment:

- Septic tanks
- Pumping station

Biological treatment step :

- constructed wetlands (vertical flow)

Outlet:

6 m³ of treated water per day.

- Direct reuse of the water for:

irrigation

Space requirement:

- 150 m²

Filling of filter material

New planted reed

After 2 months of operation

	COD	BOD	TKN	NH4-N	PO ₄ -P	TSS	pН
	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	
Septic IN	400	193			9	186	6.9
Septic Out	301	114			8	70	7.0
Reed Bed OUT	16	3	2.8	0.2	1.8	0	7.4

Drilling Camp, Abu Butabul, Oman

Client: British Gas

Contractor:

Bauer Emirates Environment (with support for design, construction supervision, start-up and operation by Mizan Consult)

Capacity:

200 population equivalent 35 m³/d

Pre-treatment:

- Raw sewage lift station with grinder

Biological treatment step :

- 2 vertical flow constructed wetlands for suspended solids removal and organic load reduction
- 2 horizontal flow constructed wetlands for biological treatment

Outlet:

- Storage pond and direct reuse for irrigation

Sludge treatment:

- Sewage sludge mineralization (primary sludge) at first treatment step

Area requirement:

- 1,800 m²

Operating costs

Power consumption 5 kWh/d Amount of composted sludge: 10 m³/year Period of sludge removal 20 years Maintenance staff: 0,03 skilled worker

Reed bed 1. stage, under construction

Reeds after 8 months of operation (08-2008)

Reed Beds after 2 years operation (01-2010)

	COD	BOD	NH4-N	TDS	TSS	рН	FC
	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]		/100ml
Reed Bed 2 out, final effluent	30	5	<0.1	2,000 – 8,800	< 5	7.9	Not detected

Sewage sludge mineralisation reed bed Al Salt, Jordan

Client : KfW, Waj Jordan

Contractor :

Bauer Emirates Environment (with support for design, construction-supervision and start-up by Mizan Consult)

Capacity: 8 m³/day surplus sludge (2.5 %DS)

Planning: 05/2011 Construction: 07-10/2011

Sewage treatment:

Extended aeration

- Aeration basin
- Settling tanks
- Multimedia filtration

Sewage sludge treatment :

- sludge mineralization reed beds (vertical flow)

Outlet:

- Sludge liquor is pumped back to STP

Advantages:

- No sludge storage & discharge
- Production of fertilizer

Space requirement:

- 640 m²

Filter layer installation

Sludge bed 2 months under operation

Sludge bed 7 months under operation (Oct.- Mai)

Al Hamra Housing Project, Ras Al Khaimah, U.A.E.

Client : Ministry of Public Works

Contractor : First Gulf Line (Main) RBC, Reed Bed Contracting L.L.C.

Main Consultant: KN-International (with support by Mizan Consult) Population equivalent: Phase 1: 100 villas, 800 PE, 216 m³/day

Planning: 2012-2013 Construction: 04/2014-04/2015

Pre-treatment:

- Tanker discharge station
- Manual bar screen
- Macerator pump station
- Sludge Filtration & Mineralization Reed Bed Stage A
 (4 basins, vertical flow, 4 x 675 m²)

Biological treatment step :

- Drainage pump station
- Reed Beds, vertical flow
- (4 basins, vertical flow, $4 \times 900 \text{ m}^2$) **Outlet:**
- 150-200 m³ of treated water per day.
- Direct reuse of the water for: Irrigation & Tanker filling
- Space requirement total:
- 12.000 m²
- Contract value:
- 4 Mio AED (RBC), total 16 Mio AED

Start of excavation and filling

Pump station

Drainage system

	COD	BOD	NH4-N	PO4-P	TDS	TSS	DO	Turbidity
	[mg/l]	NTU						
Inflow	446	175	33.4	11.6		308		386
TSE	22	7	0.99	0.35		<5		0.33
ADSSC P1	-	10	-	-	-	10	>1	5

Al Haray Housing Project, Fujeirah, U.A.E.

Client : Ministry of Public Works

Contractor : Dar AlWd RBC, Reed Bed Contracting L.L.C.

Main Consultant: KN-International (with support for design, construction supervision and operation by Mizan Consult) Population equivalent: Phase 1: 132 villas, 880 PE, 316 m³/day

Planning: 2012-2013 Construction: 2013-2014

Pre-treatment:

- Tanker discharge station
- Manual bar screen
- Macerator pump station
- Sludge Filtration & Mineralization Reed beds Stage A
 (4 basins, vertical flow, 4 x 1000 m²)

Biological treatment step :

- Drainage pump station
- Reed beds, vertical flow (4 basins, vertical flow, 4 x 1325 m²) **Outlet:**
- 220-316 m³ of treated water per day.
- Direct reuse of the water for:
- Irrigation & Tanker filling

Space requirement total:

- 15.000 m²

Contract value:

- 7 Mio AED (RBC), total 25 Mio AED

Start of excavation and filling

Liner installation

Drainage system

	COD	BOD	NH4-N	PO4-P	TDS	TSS	DO	Turbidity
	[mg/l]	NTU						
Inflow	260	105	37.8	12.2		138		93.2
TSE	31	9	1.15	0.23		6		2.71
ADSSC P1	-	10	-	-	-	10	>1	5
ADSSC P3	-	50	2	2	-	50	>3	75

Doha North STP TSE Lagoon, Qatar

Client:

Ashgal Infrastructure Works, Qatar

Contractor:

Keppel Seghers, Waagner Biro Gulf (RBC team)

Main Consultant:

KEO, Stanley Consultants (with support for design, construction supervision and operation by Mizan Consult) Data of lagoon:

- Deep pond: 8,753 m²
- Shallow pond: 5,064 m²
- Reed planted wetland area 18,821 m² - Walkway 568 m²
- Gazebo 3 Nr.
- Circulation pump: 600 l/s,
- Total Storage volume: 18.000 m³

Planning: 2012 Construction: 2012-2015

Treatment of lagoon water:

- Gravel filled reed planted wetland area
- Drainage water collection system
- Recirculation pump

Space requirement total:

- 33.000 m²

Contract value:

- 7 Mio AED

Liner installation

Drainage system and gravel filter

Wetland area, fresh planted

Al Haray Housing Project, Fujeirah, U.A.E.

Client : Ministry of Public Works

Contractor : DarAlWd

Main Consultant:

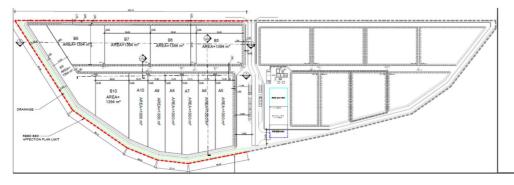
KN-International (with support for design by Mizan Consult engineer) **Population equivalent:** Phase 2: 198 villas, 1584 PE, 576 m³/day

Planning: 2014-2015 Construction: 2015-2016

Pre-treatment:

- Tanker discharge station
- Basket screen
- Lifting pumps
- Rotor rakes
- Sludge Filtration & Mineralization Reed Bed Stage A
 (10 basins, vertical flow, 6 x 1000 m²)

Biological treatment step :


- Drainage pump station
- Reed Bed, vertical flow
- (4 basins, vertical flow, 6 x 1325 m²) **Outlet:**
- 500 700 m³ of treated water per day.
- Direct reuse of the water for: Irrigation & Tanker filling

Space requirement total:

- 22.000 m²

	COD	BOD	NH4-N	PO4-P	TDS	TSS	DO	Turbidity
	[mg/l]	NTU						
Inflow								
TSE								
ADSSC P1	-	10	-	-	-	10	>1	5
ADSSC P3	-	50	2	2	-	50	>3	75

Mountain Wildlife Visitor Center, Kalba, Sharjah, U.A.E.

Client :

Government of Sharjah. H. H. Ruler's office

Contractor :

Main 'Contractor: Hardco RBC, Reed Bed Contracting L.L.C.

Main Consultant:

URS, Mott Mac Donald (with support for planning and design by Blumberg engineers and Mizan Consult) **Population equivalent:** 1000 visitors, 30 staff members, 30 m³/day

 Planning:
 2013-2014

 Construction:
 2015

 Start:
 12-2015

Pre-treatment:

- Lift Station
- Septic tank
- Grinder lift station

Excavation septic tank

Installation of distribution pipes

Biological treatment step :

- Vertical subsurface flow constructed wetland (2 basins, 2 x 300 m²)

Outlet:

- 20-30 m³ of treated water per day.
- Direct reuse of the water for: Irrigation

Space requirement total:

- 1.050 m²

Contract value:

- 1.09 Mio AED

Reed Bed under operation

	COD	BOD	NH4-N	PO4-P	TDS	TSS	DO	Turbidity
	[mg/l]	NTU						
Inflow	-	-	-	-		-		-
TSE	-	-	-	-		-		-
ADSSC P1	-	10	-	-	-	10	>1	5
ADSSC P3	-	50	2	2	-	50	>3	75

Dubai Creek Harbour, Wetland Recovery Center, U.A.E.

Client : EMAAR, The Lagoons Phase One L.L.C.

Contractor : RBC, Reed Bed Contracting L.L.C.

Main Consultant: Mott Mac Donald

Population equivalent: 210,000 reed plnats

 Planning:
 2016

 Construction:
 2016-2017

 Start:
 03-2017

Pre-treatment:

- TSE Irrigated Nursery

Biological treatment step :

Outlet:

- 20-30 m³ TSE.
- Direct reuse of the water for: Road watering

Space requirement total:

- 11 x 312 m²

Contract value:

- 2.9 Mio AED

Excavation of reed plants

Nursery fresh potted reeds

Nursery after 4 month

	COD	BOD	NH4-N	PO4-P	TDS	TSS	DO	Turbidity
	[mg/l]	NTU						
Inflow	216	82	6.39'	47	2662	47'	4.7'	6.92'
TSE	-	-	-	-		-		-
ADSSC P1	-	10	-	-	-	10	>1	5
ADSSC P3	-	50	2	2	-	50	>3	75

TSE, used for irrigation of the nursery

Dubai Creek Harbour, Wetland Creation, U.A.E.

Client : EMAAR, The Lagoons Phase One L.L.C.

Design & Build Contractor :

RBC, Reed Bed Contracting L.L.C. Sievertconsult

Supervision Consultant: Mott Mac Donald

Population equivalent: 100,000 m² wetland

 Planning:
 2016-2017

 Construction:
 2017-2018

 Start:
 10-2018

Pre-treatment:

- TSE from Municipality used for filling

Biological treatment step:

Area A 33,543m² surface flow wetland Area B 20,015 m², pond with islands Area C 46,442 m² planted submerged vertical gravel filter

Outlet:

- 2750 m³ TSE/day (Summer)
- 3250 m³ TSE/day (Winter)
- Direct reuse of the water for: Irrigation tank top up

Space requirement total:

- 100,000 m²

Contract value:

- 22.5 Mio AED

	COD	BOD	NH4-N	PO4-P	TDS	TSS	DO	Turbidity
	[mg/l]	NTU						
TSE-IN	216	82	6.39'	47	2662	47'	4.7'	6.92'
TSE-OUT	<40	<6	<5	< 3		<5		-

Haya Water, Pilot Reed Bed

Client : Haya-Water, Oman

Contractor : RBC, Reed Bed Contracting L.L.C.

Consultant: Sievertconsult

Population equivalent: 220 PE

 Planning:
 2016

 Construction:
 2016

 Start:
 01-2017

Pre-treatment: - Buffer tank

- Anoxic tank (25 m³)

Biological treatment step :

Stage A: 3 x 139 m² (417 m²) Stage B: 2 x 312,5 m² (625 m²)

Outlet:

- 20 m³/day

- Reuse for irrigation

Space requirement total: - 1300 m²

Contract value: - 0,6 Mio AED

	COD	BOD	NH4-N	PO4-P	TDS	TSS	DO	VHO	
	[mg/l]	Oval/L							
TSE-IN	974	330	59	11	1456	508	-	30	
TSE-OUT	24	5	0,3	0,7	1730	2	6,4	0	
MD 145/93 Standard A	150	15	5	30	1500	15	-	< 1	

Sewage sludge mineralisation reed bed Wadi Hassan, Jordan

Client :

giz, Borda Water Authority of Jordan (WAJ)

Contractor:

Under tender

Layout plan

Capacity:

Wastewater per day 900 m³ 50 m³/day surplus sludge with 3 %DS (1500 kg DM)

Planning: 2018 Construction: 2018/2019

Sewage treatment:

Extended aeration

- Aeration basin
- Settling tanks

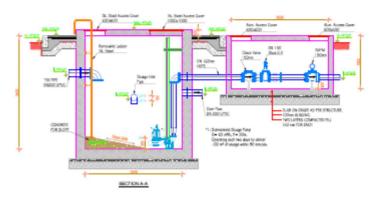
Sewage sludge treatment :

- Sludge thickener
- Sludge drying beds (summer operation) - sludge mineralization reed beds (winter
- operation)

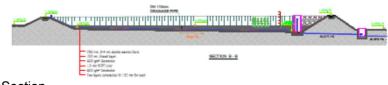
Load of sludge mineralization reed bed

- 6 month per year (winter)
- 70 kg DM /m²xyear
- 11.7 kg DM/month (operation in winter)
- Treated sewage irrigation during summer and start-up (40 m³/day)

Output:


- Sludge liquor is pumped back to STP
- 686 m³ mineralized sludge per year accumulating in the basins, removal after 10 years.

Advantages:


- No liquid sludge handling, storage & disposal for 10 years
- No use of chemicals and energy only for pumping

Space requirement:

- 3,911 m² (reed bed surface)
- 9,238 m² (total area)

Distribution chamber

Section

Feynan Ecolodge, Reed Bed (Decentralized Wastewater Management for

Adaption to Climate Change in Jordan)

Client :

giz, Borda, Water Authority of Jordan (WAJ)

Contractor: Shabatat Contracting

Consultant: Ingenieurbüro Blumberg

Population equivalent:

5 m³/day

Planning:	2016
Construction:	2018
Start:	12-2018

Pre-treatment:

- Biogas-chamber for blackwater as primary Treatment (20 m³, 3 – 5 m³ Biogas per day)
- ABR (Anaerobic 'Baffled Reactor, 5 Chamber total 29 m³)

Biological treatment step :

- Solar lift station
- Syphon chamber
- Vertical flow constructed wetland: 2 x 75 m² (150 m²)
- Solar lift station to irrigation tank

Outlet:

- 4 m³/day
- Reuse for irrigation

Space requirement total:

- 200 m²

	COD	BOD	NO ₃	PO4-P	TDS	TSS	DO	VHO
	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	Oval/L
IN	527	305	53 (NH4)	12	-	299	-	-
TSE-OUT	40	5	30	2	-	5	2	0
JS 893/2006 Category A	100	30	30	15	1500	50	-	< 0.1

Dubai Expo 2020

(Sustainable Pavilion, Water Management)

Client : EMAAR

Main Contractor : ASGC,

Design & build Contractor : Reed Bed Contracting L.L.C. & Sievertconsult

Consultant: Sherwood, Grimshaw

Waste Water:

55 m³/day black-Water (Reed bed & UF)
7 m³/day grey water (UF)
20 m³/day desalination of ground water (RO)
11 m³/day condensate (UF)
Evaporation pond for brine

 Planning:
 2019

 Construction:
 2019-2020

 Start:
 09-2020 (21)

Reuse:

- Black water for toilet flushing and irrigation
- Grey water for hand washing & ablution
- Condensate and groundwater for potable use

Biological treatment step:

- Black water: Reed Bed & aeration tanks

Mechanical treatment step:

- Black water: Ultrafiltration
- Grey water: Disk filter and Ultrafiltration
- Ground water: Filter & RO
- Condensate: Disk Filter and Ultrafiltration

Space requirement total:

- Black water: Settling tanks in landscaping 25 m³, Reed Beds 771 m² + 2 x 30 m³ aeration tanks, Ultrafiltration skid
- Grey water: 25 m³ buffer tank, Disk & UF-Skid
- Condensate: 25 m³ buffer tank, Metal removal and Adsorbtion Filter

Raw wastewater treatment by constructed wetlands in Al Azraq, Jordan

Employer:

BORDA Aman, Water Authority of Jordan (WAJ)

On behalf of:

Swiss Agency for Development and Cooperation (SDC)

Consultant:

Ingenieurbüro Blumberg (Blumberg Engineers)

Short description:

Two-stage wastewater treatment plant for a town in the Governorate of Zarqa

Population equivalent:

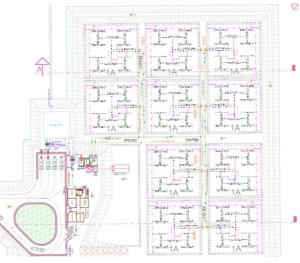
8358 PE Daily loading rate: 515 m³/d

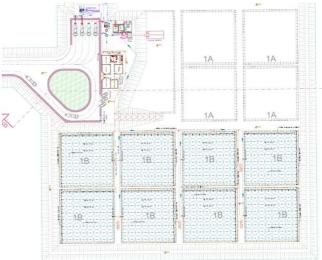
Project status:

Inception Phase: 11-2017 – 06-2018 Planning completed: 11-2019 Implementation Phase: 2020 - 2021

Pre-treatment:

- 2 tanker discharge stations
- 2 automatic bar screen (40 mm)


Stage A reed beds:


- Syphon: V = 30 m³, Q = 140 l/s
- 10 basins á 1,000 m²

Stage B reed beds:

- Pump station: V = 40 m³, Q = 32 l/s
- 8 basins á 1,000 m²
- Effluent discharge reuse:
- Storage pond and reuse for irrigation and non potable reuse on site

	COD	BOD	NO ₃	PO4-P	TDS	TSS	DO	VHO
	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	Oval/L
IN								
TSE-OUT								
JS 893/2006 Category A	100	30	30	15	1500	50	-	< 0.1