CONSTRUCTED WETLANDS (Reed bed technology)

Dipl.-Ing. Wolfram Sievert Mizan Consult FZE

Content

- Introduction
- Reed bed technology for waste water
- Examples worldwide
- Reed bed technology for sewage sludge
- Reed Bed technology for sewage lagoons
- Discussion

Company Profile

WOLFRAM SIEVERT

Degree:

University of Applied Sciences Suderburg, GermanyDipl. Ing. (FH) Environmental technology:Branches of study: 1. Waste management2. Waste water management

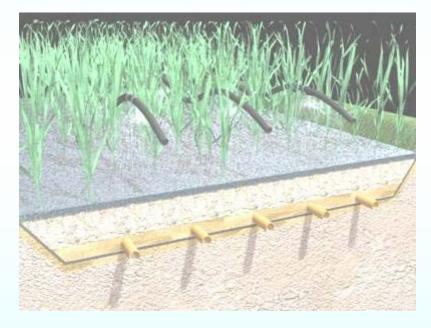
Occupation:

6 Years Consulting Office Blumberg-Engineers, Germany

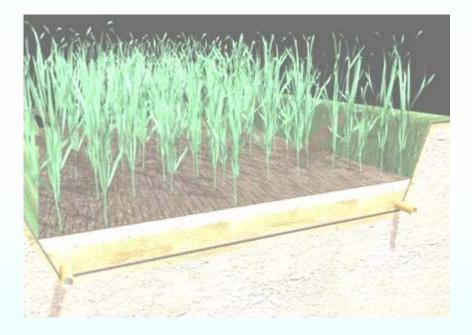
- 2 Years Waagner Biro Gulf LLC, Dubai
- 1 Year Bauer Emirates Environment, Abu Dhabi

Since 2008: Mizan Consult FZE, Dubai

Reed bed technology, History


- Invented by Kaehte Seidel, Germany, 1950
- Started for single family houses in rural areas
- Technology spread over Europe and US
- Large municipality and industrial applications
- Nowadays more than 10.000 systems in Europe
- Since 2005 more than15 systems in Qatar, Oman, UAE

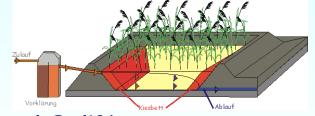
Content


- Reed bed technology
- Sewage
- Sewage Sludge
- Lagoons

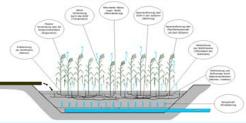
Technology

Constructed wetlands (Reed Beds) for treatment of sewage, storm water, sewage sludge, ponds, lagoons and pre-treatment of water works

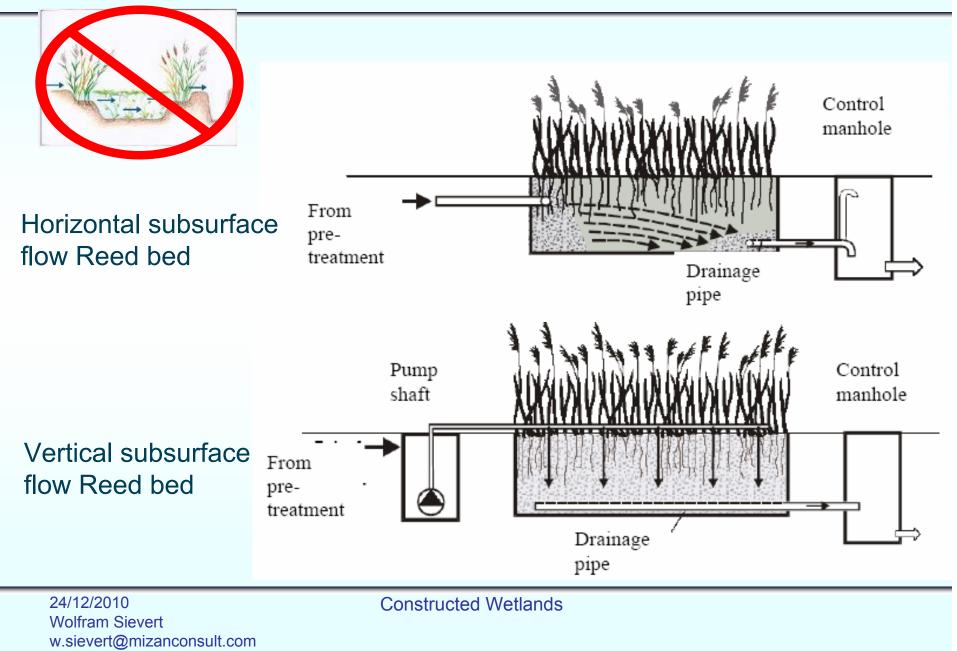
Reed Bed for sewage or storm water

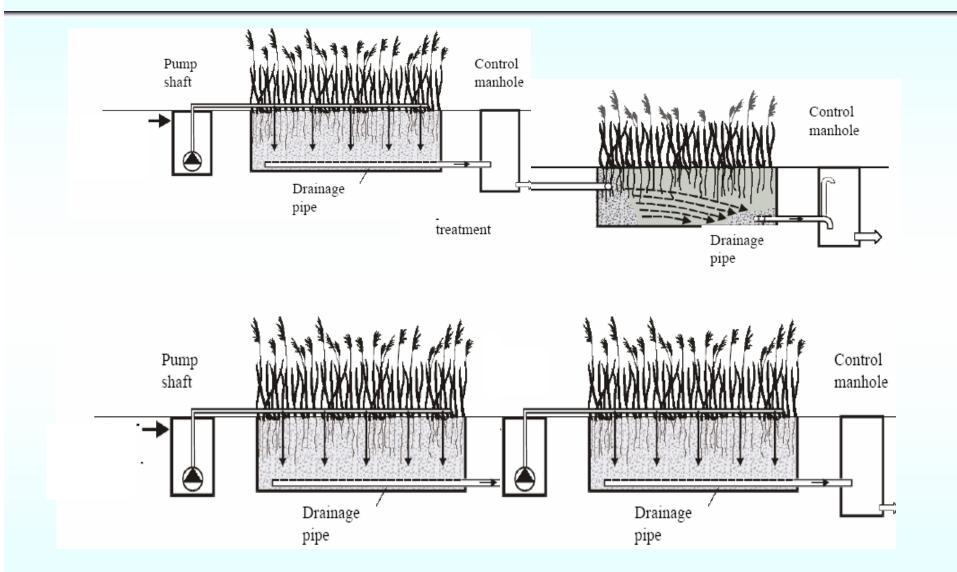

Reed Bed for sewage sludge

24/12/2010 Wolfram Sievert w.sievert@mizanconsult.com


Reed bed technology

Self-preserving biozinose filter


• Filtration processes (SS)


- Drying and mineralisation (SS, Parasites, Faecal Colif.)
- Microbial and fungal decomposition of organic matter (BOD, COD)
- Chemical and physical precipitation and adsorption processes (Phosphate binding)
- Aeration by the reeds, aerenchym (Nitrification)
- Anaerobic zones, water saturated (De-nitrification)
- Prävention of clogging effects by the continuous growth and decay of roots and stems

Overview of reed bed technology

Overview of reed bed technology

Constructed Wetlands

Reed bed technology, German design parameter

Reed bed for pre-treated sewage

	Design criteria	Design criteria
Horizontal filter	≥ 5 m²/person min. 20 m²	\leq 16 g COD/(m ^{2*} d)
	Flow ≤ 40 mm/d = 40 l/(m²*d)	depth \geq 50 cm
Vertical filter	≥ 4 m²/person min. 16 m²	\leq 20 g COD/(m ^{2*} d)
	Flow ≤ 80 mm/d = 80 l/(m²*d)	depth \geq 50 cm (better 80 cm as in former times)

Calculated influent: mechanically treated wastewater with a specific BOD of 40 g BOD/(P*d) and 100 I/(P*d)

24/12/2010 Wolfram Sievert w.sievert@mizanconsult.com

Reed bed technology, design parameter raw sewage

	Design criteria	Design criteria
1. Step Vertical	\geq 2 m ² /person	
filter	Flow ≤ 120 mm/d = 120 l/(m²*d)	depth \geq 30 cm
2. Step Horizontal	\geq 3 m ² /person	
filter	Flow ≤ 80 mm/d = 80 l/(m²*d)	depth \geq 30 cm

Reed bed technology, raw sewage, grinder pump lift station (only mechanical equipment)

Constructed Wetlands

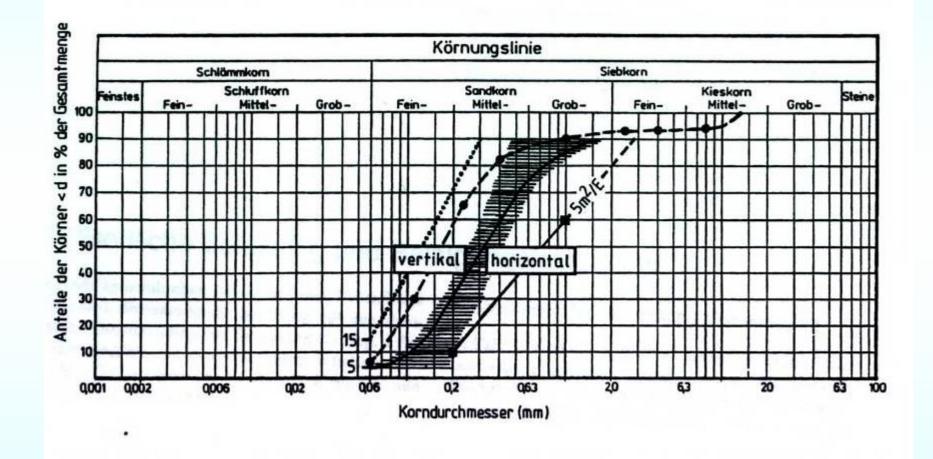
Reed bed technology, raw sewage, inflow

Top: Raw sewage inflow point before operation

Right: Raw sewage inflow point after 2 years of operation

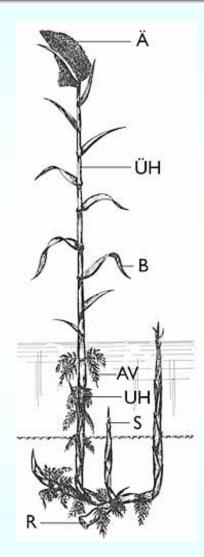
24/12/2010 Wolfram Sievert w.sievert@mizanconsult.com

Reed bed technology, raw sewage, mineralized



24/12/2010 Wolfram Sievert w.sievert@mizanconsult.com

Reed bed technology, design parameter for ME


	Design criteria	Design criteria
Stage A Vertical filter	\geq 1.2 – 2.5 m²/person \leq 50 [g SS/(m2*d)]	
	Flow ≤ 60 -120 mm/d = 60 -120 l/(m²*d)	depth \geq 30 cm
Stage B Vertical filter	\geq 0.8 - 3 m²/person \leq 20 – 40 [g COD/(m2*d)]	
	Flow ≤ 40 - 80 mm/d = 40 - 80 l/(m²*d)	depth \ge 60 cm

Reed bed technology, filter material

Constructed Wetlands

Reed bed technology, reed plants

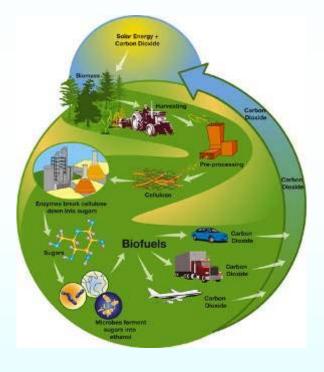
Phragmites australis (common reed)

Endemic speciesSewage adapted

Constructed Wetlands

Advantages - Disadvantages

- Easy to maintain
- Long lasting system (>15 years)
- Use of local material
- Low or no energy consumption
- Reuse of the cleaned wastewater for irrigation or in the buildings as toilet flush water
- No problems by pause times or under loading
- No problems by short time overload
- BUT: 2-5 m²/PERSON


Green Buildings (LEED)

- Treatment of storm water
- Reduce storm water runoff (Stormwater in Reed Bed)
- Creation of habitate
- Biodiversity
- Reduce Water consumption (Reuse in Building)
- Reduce Fresh-Water for irrigation
- Use of local material

Reed Bed Technology, Environmental benefits

- CO₂ capture and storage
- Protection of ground and sea from sewage discharge
- Mesoclimate enhancement
- improve and maintain biodiversity
- increase environmental complexity
- recharge of groundwater
- Increase ecological resilience

24/12/2010 Wolfram Sievert w.sievert@mizanconsult.com

Reed Bed Technology, Human benefits

- Better Mesoclimate
- Green belt recreation areas
- Feeling of an eco-friendly country
- Additional leisure time resources
- Educational spaces for teaching sustainability
- New jobs in the biomass-economy

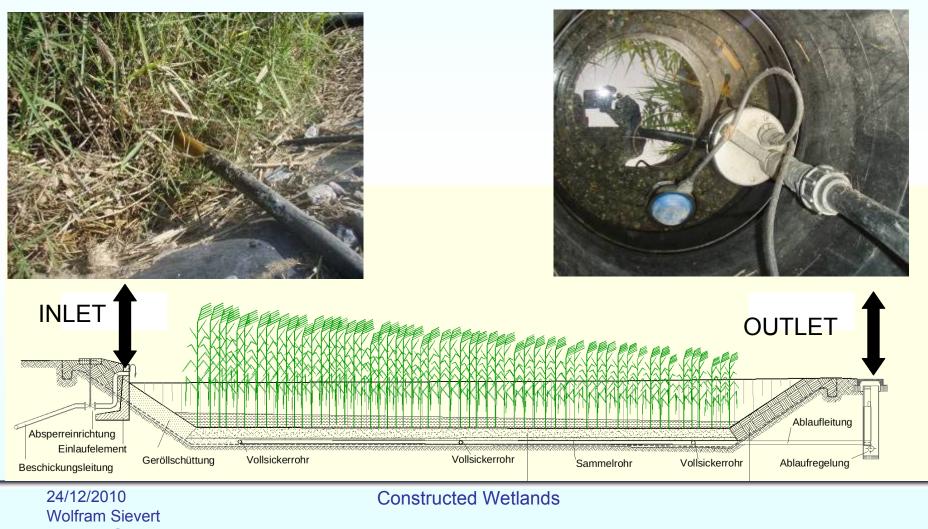
24/12/2010 Wolfram Sievert w.sievert@mizanconsult.com

Reed Bed Technology, Economic benefits

- Saving on water production and storage
- Creation of tourism facilities
- Improvement of farming
- Production of bio-fuel and eco-building materials from reed plants

Constructed Wetlands

Products from reed plants


Biofuel

Eco Building materials

Constructed Wetlands

Sewage Sludge Mineralisation

w.sievert@mizanconsult.com

Sewage Sludge Mineralization, Utilization

- Watercontent 40 75%
- Carrier of nutrients with slowly nutrients delivery
- Stable structure and high waterstorage capacity (like humus)
- Use in
 - → Agriculture
 - → Landscaping
 - \rightarrow Humusproduction

Disadvantage

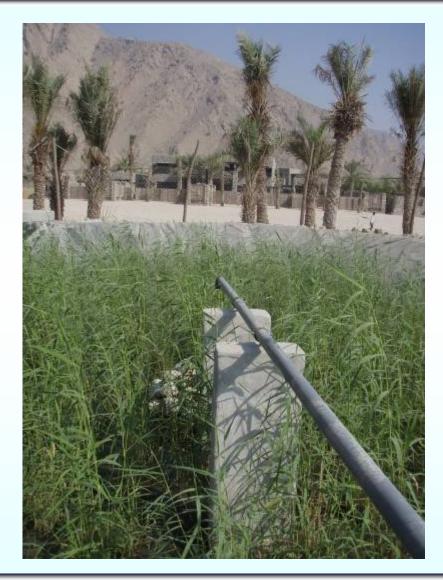
• The definition of the product is still "sewage sludge"


Constructed Wetlands

Sewage Sludge Mineralization, Advantages

- No sludge disposal
- No energy
- Low maintenance
- No spare parts
- Stock of humus / fertilizer
- High value of product

Sewage Sludge Mineralization, Examples


24/12/2010 Wolfram Sievert w.sievert@mizanconsult.com

Sewage Sludge Mineralization, Examples

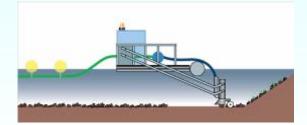
3 plants in the Middle East

- Qatar, Al Khor 10,000 p.e.
- U.A.E., Dubai 240 p.e.
- Oman, Zighy Bay, 1,400 p.e.

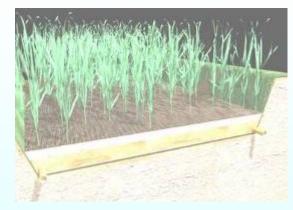
Constructed Wetlands

Reed bed technology, design parameter sludge

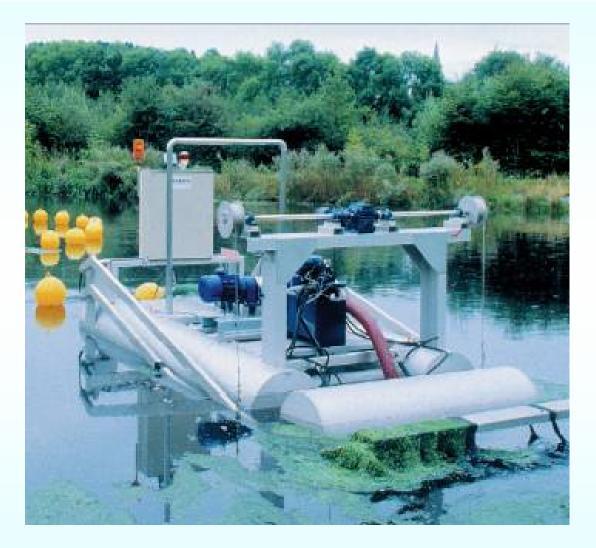
60 – 120 kg DS/m²x a


0.15 – 0.3m² / p.e.

24/12/2010 Wolfram Sievert w.sievert@mizanconsult.com


- Sludge evacuation boats
- Sludge drying reed beds
- Sedimentation reed basins (inflow)
- Reed bed as additional treatment step

Sludge removal


- Sludge suction boat
- Sedimentation and mineralization beds
- Sewage sludge humification

Constructed Wetlands

24/12/2010 Wolfram Sievert w.sievert@mizanconsult.com

Reed bed filter at inflow

- SS removal and mineralization
- BOD/COD removal
- Nitrification
- DO enrichment

Sustainable and eco-friendly sewage treatment technologies are available and proven in the Middle East.

Mizan Consult provides the consultancy services to implement these technologies.

Thank you !

24/12/2010 Wolfram Sievert w.sievert@mizanconsult.com